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ABSTRACT 

An interval linear program is the problem of maximizing {(c, x): a < A x ~ b} 
for given matrix A and vectors a, b and c. The explicit (noniterative) solutions 
of interval programs given here, extend earlier results of Ben-Israel and 
Charnes. 

Introduction. An  interval l inear program,  abbreviated IP, is defined as a linear 

p rogram o f  the form:  

(1) maximize ( c , x )  s.t. a < A x  < b where the vectors a, b, c and the matrix A 

are given. 

This problem was introduced in [23 and solved explicitly in the feasible bounded  

case with A o f  full row rank. The general case was studied in [4],  1-5] and solved 

iteratively. 

The results of  [2-I are extended in this paper  to IP ' s  with matrices o f  arbitrary 

rank.  

Preliminaries and notations. The following notat ions are used: 

R" the n-d imens ional  real  vector space 

R r~n the space o f  m x n  real matr ices  

R~ x" = { X  ~ R rex": rank X = r} 

For  any x ,  y e R " :  

x > y denotes x~ => y~ (i = 1 , . . . , n )  
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(x,y)  = ~ x i y i  
i=1 

For any subspace L c R": 

Pr. the perpendicular projection on L 

x + L  the manifold { x + l : l ~ L }  

For any A e RmX": 

A t the transpose of A 

R(A) the range space of A 

N(A) the null space of A 

a{1} = {T6R"Xm: ATA = A} 

A + the generalized inverse of A, [3]. 

e the vector of ones, with dimension clear from context. 

The IP(1) is denoted by 

(2) IP(a, b, c, A) 

IP(a, b, c, A) is feasible if 

F = {xER":a < A x <  b} ~ Band bounded if 

max {(c, x): x s F} < oo. A feasible 1P(a, b, c, A) is bounded if, 

and only if 

(3) c e R(A ') [2]. 

The mapping q: RmxRmxRm~ R m is defined by 

t/(u, v, w) = (r/z) (i = 1 , . . . ,  m) 

where 

(4) 
f ui if wi < 0 

t/i = v, if w~ > 0 

O,ui + ( 1 -  O~)vi i f w i = 0  

and 0 <  0 , <  1. 

13 

Results.  Conditions for an explicit solution of  IP(a,b,e,A) are given in: 

(u) For any wERm, rl(u,v,w) is linear in 
v 

In what follows we occasionally refer to x + L, it(u, v,w) in the singular sense 

as "vector" ,  " 'solution", etc., although in general these are sets of  vectors. 
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THEOREM 1 : 

Assumptions: a, b ~ Rm ; c ~ Rn ; A ~ R mxn are given such that I P(a, b, c ,A ) is 

feasible and bounded. 

T~ A(1} is arbitrary. 

(5) Xo = TPR<A)~I(a, b, (TPma))tc) + N(A)  

Conclusion: xo is an optimal solution of  IP(a ,b ,c ,A)  i f  and only if xo is a 

feasible solution of  IP(a, b,c,A).  

PROOF. 

Only if: Obvious. 

If: Substituting 

(6) u = Ax ,  x = TPa~,t)u + N(A)  

and using (3) it follows that (2) is equivalent to the problem: 

(7) max((TPR<a))tc, u) 

s.t. 

(8) a < u < b 

(9) u ~ R(A) .  

The optimality of x o follows from (6) and the fact that 

(10) Uo = PR(A)IlO, rio = rl(a, b,(TPR(A)) tc) 

is an optimal solution of (7) (8) (9), which will now be proved. 
From 

ATPR(A) = ATAA+ = AA+ = Papa) 

and Xo a feasible solution of (2) it follows that u o satisfies (8). Therefore u 0 is a 

feasible solution of (7) (8) (9). To prove that it is optimal we show that its value 

((TP~(A))tC, Uo) equals the maximum value of the less restricted problem (7) (8): 

The optimal solution of  (7) (8) is clearly ~/o and its maximal value is: 

( (TPatA) ) tC , r lo )  = (PRcA)Tt c, rlo) 

= (Pma)Ttc, Pma)~lo) 

= ((TPg(a))'c, Uo). [] 

Xo defined by (5) is independent of the particular T~ A{1} used in its definition. 

In particular (5) can be rewritten for T = A ÷ as 
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(5') Xo = a+t l (a ,b ,A+tc)  + N ( A ) .  

This follows from: 

t t (TPR(A))t¢ = PR(a)T C 

= A+tAtTtc  

= A+tAtTtAtd ,  

for some d since c ~ R(A t) by (3) 

= A+tAtd since T~A{1} 

= A+tc 

and from the fact that 

15 

A{1} = A + + { W : A W A  = 0} 

which implies that: 

Xo -- TPa(A)tlo + N ( A )  

= ( A  + + W)PR(A)rIO + N ( A )  where  A W A  = 0 

= A +~1o + WAA +qo + N(A) 

= A +11o + N ( A )  since W A A  +tlo ~ N ( A ) .  

For A of full row rank i.e. 

AA+ -- PR(a) = I 

xo defined by (5) is always feasible since 

Axo -- AA+t l (a ,b ,A+tc ) ,  by (5') 

= t l(a,b,A+tc)  

which, by definition (4), lies in the interval [a, b]. 

This special case is the main result of [2]: 

COROLLARY 1. Let  I P ( a , b , c , A )  be feas ib le  and bounded, A ~ R  rex" and 

T~A{1}. Then  the opt imal  solution of  IP(a ,  b , c , A )  is 

(11) Xo = r q ( a , b ,  Ttc) + N ( A )  
[] 

Another class of IP ' s  which can always be solved explicity is considered in: 

COROLLARY 2. 

Assumpt ions:  g , h ~ R m ;  c ~ R " ;  A ~ R  rex" are given such that 
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(12) IP(g - PN(a,)r/, h - PN(a,)q, c, A) 

is feasible and bounded where TEA(l} is arbitrary and 

rl = q(g, h, (TPR(a)) b) 

Conclusion: The optimal solution of  (12) is: 

(13) x = TPR(a) q + N(A) .  

PROOF. By Theorem 1 it suffices to show that (13) is a feasible solution of 

(12), i.e. that 

(14) 

but 

so (14) becomes 

or finally 

g -  PN(,t,)~/ < Ax  < h -  PN(a,)r/ 

Ax  = ATPR(a)tl = PR~a)t/ 

g -- Pu(a,)tl <= PR(A)t/ <= h - -  PN(At )r l  

g < q < h  

[] 

Since the explicit solution of 

(12) IP(g - PN(a,)rl, h - PN(a,)q, c, A) 

is available, we may approximate general IP(a, b, c, A) by problems of class (12). 

For the choice g = a and h = b Corollary 2 gives: 

COROLLARY 3. 

Assumptions: a, b E R " ;  cER~; A E R  mx~ are given such that 

(15) IP(a - -  PN(A , ) t IO ,  b - P N ( A ' ) q O ,  C, A) 

is feasible and bounded where T E A { l }  is arbitrary and 

rlo = ~l(a, b,(TPR(A)) t C ) .  

Conclusion: The optimal solution of (15) is 

X o = TPg(a)tlo + N(A) [] 

The above results are now applied to a standard linear program: 
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(16) maximize ( c , x )  

s.t. A x  = b,  

x > 0  

where A ~ Rm*"; b E Rm; c ~ R n are given. An additional constraint: 

(17) x < u,  

where u ~ R n is a vector whose components uj are positive and sufficiently large, 

is now adjoined to (16). If(16)is bounded, then (17) is redundant for sufficiently 

large ui ,  j = 1,.. . ,  n. Conversely, if for all u~ > 0, j = 1,...,  n the optimal solu- 

tion of (16) (17) is a function of some uj then (16) is unbounded. Now A x  = b 

is equivalent to 

(18) x = T b + N y  

where T~ A{1}, N is any matrix whose columns span N ( A )  i.e. R ( N )  = N ( A ) ,  

y determined by x, T, N.  Substituting (18) in (16)(17) we get, by ignoring the 

constant term (c, Tb)  in the functional, the problem: 

maximize (c, N y )  

s.t. 

- T b  < N y  < u -  T b  

i.e. 

(19) I P ( - T b ,  u -  Tb ,  Ntc ,  N ) .  

From Theorem 1 we conclude that for any SEN{l}  

(20) y = S P n t A ) r l ( - T b ,  u - T b ,  (SPs(A))tNtc) + N ( N )  

is an optimal solution of (19) if and only if it is a feasible solution. 

Now we note that 

NSPn(A) = N S N N  + since R ( N )  = N ( A )  

= N N  + since S e N { l }  

= PlY(A). 

Therefore (20) substituted in (18) gives 

(21) x = T b  + P~V(A)rI(--Tb, u - T b ,  P,v{A)C) 

= T b  + PNCA)[-- T b  + rl(O, u, Pn(A)c)], 

by the linearity of t/, 
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= PR(a~)Tb + PN(A)r/(O, U, PN(.4)c) 

= A + b + PN(A)r] (0, U, PN(A)C), 

since PR(,t,)Tb = A + A T b  = A+b.  

Collecting these results we get: 

THEOREM 2. 

A e R  , b e  R m, u > 0 in R" are such that the problem Assumptions: t u r n  

(22) maximize (c, x) 

s.t. 

A x = b ,  O < x < _ u  

is feasible. 

(21) x* = A +b + Plv(a)r/(0, u, PN(A)C) 

Conclusion: x* is an optimal solution of (22) i f  and only if  it is a feasible so- 
lution. 

[] 
Examples 

EXAMPLE 1 : 

Here 

and as in [2] we compute 

T =  (00 

therefore 

Maximize xl - Xz 

s.t. 0 =< x~ + x  2 <= 2 

5 
1 - x i  - < ~  

- 1  < Xz < 3 

Ill 1] 
A =  01 

[.0 l J  

1 1 2 - 1  
0 , P a ( a ) =  ~ [,1 - 1  2 

1(12:) 
TPR(a) = ~ 1 - 1  

( r e ~ ( J c  = 5 
_ - ~ .  - _ 
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x = A +b + P/v(a)r/(0, u, PN(.4)c) 

1 ( 1 ) 1 (  11 -11) ( ( 0 )  ( u l )  , 1 ( 1 1 )  ) 
= 2 1 a + ~ -  __ r/ 0 ' U2 2 - 

( ' )  1 e +  

2 a - u 1  

which is feasible for ul = a. Therefore the optimal solution is x = ( ~ .  
W/ 

EXAMPLE 3: Maximize xl 

s.t .  x l - x 2  = • (~>0) 

x l , x  2 ~ 0 

This problem is unbounded, but Theorem 2 can still be used to describe the 
optimal ray: 

Here 

and by (21) 

A = (1, - 1), 

PN(A) "~ ~- 
1 

x = A+b + Pu(.4)q(O,u,PN(a)c) 

1 1 ( _ ~ ) ~ +  ~- (~  ~ ) ,  ( (00) ,  ( : ; ) ' - ~ ( ~ ) )  

=-~- + , 2 -  2 

which is feasible for 2 > a/2. 

Since the set {(xl) } : x, - x2 = a, xl > 0, x2 => 0 is unbound, and the bounds 
x2 

ux, u2 cannot be finite. The optimal solution is therefore: 
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EXAMPLE 4: Maximize 

s.t. 

Here 

Therefore by (21) 
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-2xx  + x2 

X l -  xz = 1 

x l , x z  > 0 

.4 = (1, - 1 ) ,  .4 - -~  - 1  

1 1 1 - 2  1 1 
Pu~a)c= ~ (  1 1 )  ( 1 )  = ~ ( _ - 1 )  

rl(O, u, PN(A)C) = 0 

x* = A ÷ b  = ~ _ , unfeasible. 

This problem cannot therefore be solved explicitly in this form, as is the case 

whenever PN(A)C < 0, A+b ~k b .  

EXAMPLE 5: Maximize 

s.t. 

xl + x 2  

x l + x 2 + x 3  = 1 

Xx,X2,X 3 >= 0 

There are infinitely many optimal solutions, i.e. all points of the form 

0 
x = ( 1 - 0 ) ,  0 < 0 < 1 .  

0 

It is interesting to see how we get this by using (21): 

Writing Ya = xl + x2, Y2 = x3 the problem is seen to be equivalent to: 

Maximize Yx 

s.t. Yl + Y2 = 1 

Yx ,Y2 = > 0 

whose solution by example 2 is: 

1 (0) 
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Therefore the op t imal  solut ion is: 

x 1 0 

x 3 0 

0 ~ 0 ~ 1 .  

Israel J. Math., 
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